A 1–10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe Floods of 2003–07*
نویسندگان
چکیده
This paper describes a fully automated scheme that has provided calibrated 1–10-day ensemble river discharge forecasts and predictions of severe flooding of the Brahmaputra and Ganges Rivers as they flow into Bangladesh; it has been operational since 2003. The Bangladesh forecasting problem poses unique challenges because of the frequent life-threatening flooding of the country and because of the absence of upstream flow data from India means that the Ganges and Brahmaputra basins must be treated as if they are ungauged. The meteorological–hydrological forecast model is a hydrologic multimodel initialized by NASA and NOAA precipitation products, whose states and fluxes are forecasted forward using calibrated European Centre for Medium-Range Weather Forecasts ensemble prediction system products, and conditionally postprocessed to produce calibrated probabilistic forecasts of river discharge at the entrance points of the Ganges and Brahmaputra into Bangladesh. Forecasts with 1–10-day horizons are presented for the summers of 2003–07. Objective verification shows that the forecast system significantly outperforms both a climatological and persistence forecast at all lead times. All severe flooding events were operationally forecast with significant probability at the 10-day horizon, including the extensive flooding of the Brahmaputra in 2004 and 2007, with the latter providing advanced lead-time warnings for the evacuation of vulnerable residents.
منابع مشابه
A CYCLONE INDUCED STORM SURGE FORECASTING MODEL FOR THE COAST OF BANGLADESH WITH APPLICATION TO THE CYCLONE `SIDR'
The coast of Bangladesh has a specialty in terms of high bending and many off- shore islands. Incorporation of the coastline and island boundaries properly in the numerical scheme is essential for accurate estimation of water levels due to surge. For that purpose a numerical scheme consisting of very fine mesh is required along the coastal belt, whereas this is unnecessary away from the coast. In...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملFuzzy Clustering Neural Network as Flood Forecasting Model
Flood forecasting is always a challenge in Taiwan, which has a subtropical climate and high mountains. This paper develops a fuzzy clustering neural network (FCNN), and implements this novel structure and reasoning process for flood forecasting. The FCNN has a hybrid learning scheme; the unsupervised learning scheme employs fuzzy min-max clustering to extract information from the input data. Th...
متن کاملStorm Flood Characteristics and Identification of Periodicity for Flood-Causing Rainstorms in the Second Songhua River Basin
Rainstorm weather systems and storm flood characteristics were studied to explore the relationship between the rainstorm weather system, the type of rainstorm, the cause of the flood and the time of occurrence, and some basic characteristics law of storm floods are summarized in the Second Songhua River Basin (Northeastern China). Then, the periodicity of catastrophic years was identified using...
متن کاملMulti-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging
Statistical post-processing for multi-model grand ensemble (GE) hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA) to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts wer...
متن کامل